Generalized Method for Solving the Permutation Problem in Frequency-Domain Blind Source Separation of Convolved Speech Signals
نویسندگان
چکیده
The blind speech separation of convolutive mixtures can be performed in the time-frequency domain. The separation problem becomes to a set of instantaneous mixing problems, one for each frequency bin, that can be solved independently by any appropiated instantaneous ICA algorithm. However, the arbitrary order of the estimated sources in each frequency, known as permutation problem, has to be solved to succesfully recover the original sources. This paper deals with the permutation problem in the general case ofN sources andN observations. The proposed method combines a correlation approach based on the amplitude correlation property of speech signals, and an optimal pairing scheme to align the permuted solutions. Our method is robust to artificially permuted speech signals. Experimental results on simulated convolutive mixtures show the effectiveness of the proposed method in terms of quality of separated signals by objective and perceptually measures.
منابع مشابه
Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals
The problem of blind source separation (BSS) of convolved acoustic signals is of great interest for many classes of applications. Due to the convolutive mixing process, the source separation is performed in the frequency domain, using independent component analysis (ICA). However, frequency domain BSS involves several major problems that must be solved. One of these is the permutation problem. ...
متن کاملAn Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effec...
متن کاملFrequency Domain Blind Source Separation for Many Speech Signals
This paper presents a method for solving the permutation problem of frequency domain blind source separation (BSS) when the number of source signals is large, and the potential source locations are omnidirectional. We propose a combination of small and large spacing sensor pairs with various axis directions in order to obtain proper geometric information for solving the permutation problem. Exp...
متن کاملFrequency-Domain Blind Source Separation of Many Speech Signals Using Near-Field and Far-Field Models
We discuss the frequency-domain blind source separation (BSS) of convolutive mixtures when the number of source signals is large, and the potential source locations are omnidirectional. The most critical problem related to the frequency-domain BSS is the permutation problem, and geometric information is helpful as regards solving it. In this paper, we propose a method for obtaining proper geome...
متن کاملPartial Separation Method for Solving
7 This paper addresses the well known permutation problem in frequency domain 8 blind source separation. The proposed method uses correlation between two signals 9 in each DFT bin to solve the permutation problem. One of the signals is par10 tially separated by a time domain blind source separation method and the other 11 is obtained by the frequency domain blind source separation method. Two d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011